In questo sito vengono utilizzati cookies tecnici necessari alla fruizione del sito stesso. Vengono inoltre utilizzati cookies di terze parti (google) per la raccolta di informazioni sulla fruzione del sito. Non vengono in alcun modo raccolte informazioni in grado identificare gli utenti. Le informazioni raccolte non vengono in alcun modo cedute ad altri soggetti.

intratumor heterogeneity key of resistence to antineoplastic therapy [10/06/2012]

 

 

Background

Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples.

 

Methods

To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression.

 

Results

Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors.

 

Conclusions

Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.)

 

Supported by grants from the Medical Research Council, Cancer Research UK, the Royal Marsden Hospital Renal Research Fund, Novartis, EU Framework 7 Personalized RNA Interference to Enhance the Delivery of Individualized Cytotoxic and Targeted Therapeutics (PREDICT), and the Wellcome Trust (to Dr. Futreal).

This article is dedicated to Tim Christmas.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

Drs. Gerlinger, Larkin, Gronroos, Martinez, and Swanton and Mr. Rowan, Mr. Horswell, Mr. Endesfelder, Mr. Matthews, and Mr. Stewart contributed equally to this article.

We thank the patients; Nasir Khan, Isobelle Coombes, Kim Edmonds, Amy Thomas, Jade Griffiths, Phil Clarke, Maggie James, and Peter Campbell; and the U.K. National Institute for Health Research.

Source Information

From the Cancer Research UK London Research Institute (M. Gerlinger, A.J.R., S.H., D.E., E.G., P.M., N.M., A.S., B.P., S.B., N.Q.M., C.R.S., B.S.-D., G.C., G.S., J.D., C.S.), Royal Marsden Hospital Department of Medicine (J.L., M.N., L.P., G.S., M. Gore), Wellcome Trust Sanger Institute (P.T., I.V., A.B., D.J., K.R., C.L., P.A.F.), Barts Cancer Institute at the Barts and the London School of Medicine and Dentistry (M. Gerlinger), and the University College London Cancer Institute (C.S.) — all in London; the Technical University of Denmark, Lyngby (A.C.E., Z.S.); and Harvard Medical School, Boston (Z.S.).

Address reprint requests to Dr. Swanton at the Cancer Research UK London Research Institute, Translational Cancer Therapeutics Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom, or at .

 

 


::::::    Creato il : 10/06/2012 da Magarotto Roberto    ::::::    modificato il : 10/06/2012 da Magarotto Roberto    ::::::