
EDITORIAL

Stat i s t ica l Predic t ion Models , Art ific ia l Neural Networks ,
and the Sophism “I Am a Pat ient , Not a Stat i s t ic”

WHEN I WAS diagnosed with lymphoma 11 years
ago, I was eager to learn my prognosis. As a

graduate student, I had excellent electronic access to the
medical literature and was quickly able to review numerous
statistical analyses of patients with my disease. A consis-
tency of these analyses was that each provided a stage-
specific prognosis, without adjustment for other prognostic
factors. For example, I had heard I had a favorable histo-
logic subtype, but I did not know how much weight, if any,
it should be given. And although I was stage IV, I was told
I was more of a “bad” stage II than a typical stage IV, so I
figured my extent of disease might be less than average for
my stage. Thus I wondered if I should interpolate between
the stage II and IV prognoses, and try to mentally average
these Kaplan-Meier curves to arrive at a prediction tailored
to my disease and me. I really wanted a predicted probabil-
ity of survival and didn’t specifically care what the prog-
nostic factors were, what my relative risk might be, or in
what risk group I belonged. I had no desire to understand the
prognostic model, but I demanded the most accurate pre-
diction currently available. I had great difficulty trying to
reconcile the mindset of the business school, where I was
studying, with apparently that of the medical school, where
I was now living. In the business school, the mentality is
that if you can predict future outcomes more accurately than
the next person, you win, end of story. I personally felt (and
still do feel) that this attention to predictive accuracy has a
place in medicine.

Djavan et al1 clearly appreciate predictive accuracy. In
the current issue of the Journal of Clinical Oncology, they
compare an artificial neural network (ANN) prediction
model with traditional logistic regression in their ability to
predict, on the basis of several diagnostic tests, whether a
man has prostate cancer. Artificial neural networks get their
name from the perception that they imitate the natural
neural networks in our heads. Regardless of whether this is
true, it is not clear that we would want to replicate our
natural neural network on the computer for the purpose of
prediction. Most studies have shown that human experts are
generally of inferior accuracy when compared with predic-
tions made by typical statistical models.2 In any case, one
can think of an ANN as a very complicated regression
equation (eg, prediction � coefficient 1 � predictor variable
1 � coefficient 2 � predictor variable 2. . . ). What makes
the ANN particularly complicated is the fact that there are
intermediate predictions (intermediate prediction 1 � coef-
ficient 1 � predictor variable 1. . . ), which themselves

make the final prediction (prediction � intermediate coef-
ficient 1 � intermediate prediction 1. . . ). In other words,
the original predictor variables (such as laboratory tests) are
combined to form an intermediate prediction, and then the
intermediate predictions are combined to calculate the
final predicted probability of whether the patient has the
disease of interest. These intermediate predictions, which
form the hidden layer of the ANN, make the ANN more
flexible than logistic regression.

Djavan et al1 took a large data set and split it into three
parts. With the first part (training, 50% of the original data
set), an ANN prediction model was developed. The second
part of the data (testing, 25%) was used to help guide the
fitting of the ANN, helping it to achieve its maximum
accuracy. The third part (validation, 25%) was used to
evaluate the performance of the ANN. The competing
method for prediction, a logistic regression model, was built
using two thirds of the data and tested on the remaining
third. From a study design perspective, it might have been
more interesting to give both techniques equal amounts of
data from which to arrive at a final model, instead of giving
three quarters to the ANN and two thirds to logistic
regression. This involved process of splitting the data and
comparing the techniques, like that performed by Djavan et
al, is necessary because it is extraordinarily difficult to
predict from characteristics of the data whether a machine-
learning approach like the ANN will outperform an ordinary
statistical method.3 In a comprehensive review of ANN and
statistical method comparisons in oncology diagnosis and
prognosis, Schwarzer et al4 made a convincing argument
that there is no evidence thus far that ANNs represent real
progress. They raised numerous concerns about the studies
performed to date, challenging whether many were really
fair contests and judged in an unbiased fashion. Clearly, a
huge practical advantage of logistic regression over an
ANN, in the setting of equivalent accuracy, is that the
logistic regression prediction model is easy to represent on
a piece of paper5 without necessarily having to resort to
software for implementation.

There are reasons why an ANN should outperform
logistic regression. Figure 1 illustrates the main ANN
advantages. This figure is a hypothetical plot (a sample
space) of two diagnostic tests, percentage of free prostate-
specific antigen (PSA) versus total PSA. In this plot, P
represents a patient with prostate cancer and N represents a
biopsy-negative patient. A classification technique attempts
to separate the P’s from the N’s by dividing the sample
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space into regions associated with either a positive or
negative biopsy. The key is to partition the sample space
such that the predictive accuracy is maximized when at-
tempting to predict the outcomes of new patients, not
necessarily those in the sample space. Logistic regression in
its ordinary formulation (without interaction terms, polyno-
mials, and so on), can draw only a single straight line in an
attempt to separate the N’s from the P’s. An ANN can draw
an unlimited number of linear or nonlinear boundaries in its
attempt to create regions of positivity or negativity.6 This
flexibility is the primary strength of the neural network but
also the potential weakness. Drawing too many lines in the
sample space produces overfit, which in turn reduces
predictive accuracy.7 For example, suppose that a region of
the sample space contains positive and negative cases
randomly distributed, with 75% of the cases being negative
(Fig 1). Extreme overfit would form homogeneous regions
with only positive or negative cases, resulting in approxi-
mately 75% of the sample space allocated to negative cases
for this example. Thus, when used to predict future cases,
the sample space will predict negative approximately 75%
of the time. Assuming future cases are, in fact, negative
approximately 75% of the time, the overfitted sample space
is expected to achieve 0.75 � 0.75 � 0.25 � 0.25 � 0.625
accuracy. In words, the sample space will predict negative
75% of the time, and 75% of the cases will be negative; the
sample space will predict positive 25% of the time, and 25%
of the cases will be positive. The reason overfit results in
inferior predictive accuracy becomes apparent when con-
sidering how accurate prediction would have been if no
lines were drawn at all. With no lines, the sample space

would always predict the dominant class (negative), and
thus achieve 75% accuracy (1 � 0.75 � 0 � 0.25 � 0.75),
which is better than the 62.5% accuracy achieved from
overfit. If multiple or nonlinear partitions are necessary, and
the ANN draws these and only these, it should predict more
accurately than logistic regression when applied to new
patients, because logistic regression cannot draw these
partitions. If the ANN does not detect the need for the
multiple or nonlinear partitions, it will likely tie logistic
regression because it will likely partition the sample space
in the same manner as logistic regression. If the ANN draws
too many partitions, it likely will lose the competition
because of the overfit problem described above. In Fig 1,
drawing the dashed lines would likely diminish predictive
accuracy, because they seem to represent overfit. The area
of overlap would have best been left fully allocated to the
dominant class: negative.

The study by Djavan et al1 also highlights how difficult it
is to compare models with respect to predictive accuracy.
Many would agree with Djavan et al that area under the
receiver operating characteristic curve (ROC) is the metric
of choice for judging discrimination when predicting binary
outcome data, such as presence or absence of prostate
cancer. By that metric, neither of the two ANNs in this
study (one for PSA between 2.5 and 4 ng/mL, the other for
PSA between 4 and 10 ng/mL) is statistically significantly
better than its logistic regression counterpart. That is a
frustrating conclusion when the neural network ROC curve
seems to dominate much of the logistic regression ROC
curve (Figs 3 and 4 in Djavan et al). Although it is tempting
to compare sensitivity or specificity at a particular cut point,
Harrell8 cautions against this for several reasons related to
the dependency of the conclusions on the specific cut point
selected, instead deferring to the full area under the ROC
curve as the preferred metric. Rather than selecting a single
validation subset of the data, Schwarzer et al2 encourage the
use of cross-validation to increase the efficiency of the
analysis. For example, 10-fold cross-validation splits the data
set into 10 equal parts. Each 10th is used for testing a model
derived from the remaining nine parts. This process of devel-
oping a prediction model with 90% of the data and testing with
the remaining 10% is repeated for a total of 10 accuracy
observations. Perhaps cross-validation would have provided
the statistical power increase necessary to declare the ANN as
more accurate than logistic regression, or vice versa.

The area under the ROC curve provides a useful measure
of discrimination, how well a prediction model can rank
patients. However, it does not provide much insight into
calibration, which refers to the correspondence between
predicted and actual probabilities. Calibration curves, which
are plots of actual against predicted probabilities, are very

Fig 1. In this hypothetical example, both logistic regression and the ANN
have drawn the solid line, but the ANN has also drawn the dashed lines.
Assuming the N’s and P’s are randomly distributed in the diagonal region
where they overlap, the extra lines reduce predictive accuracy for future
patients and represent overfit.
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useful for visually determining accuracy. One would gen-
erally like to see such a curve before providing predicted
probabilities to a patient.

Predictive models applied to the individual patient are
sometimes controversial. The chief complaint against them
is that an individual is a patient, not a statistic. The
argument is that statistics apply to groups of patients and not
to individual patients. For example, an individual patient
either has prostate cancer or not, and a probability of having
prostate cancer has no useful interpretation for him. This
seems like a weak argument, and some extreme examples
show why. Suppose you are forced to play Russian roulette
and have the choice between two six-shooters; one has one
bullet, and the other has five. Would you be indifferent in
your choice? You will either survive or not, but I have a
feeling you will choose the pistol with a single bullet. Is the
weather forecast helpful to you when deciding whether to
carry your umbrella? It will either rain or not today. When
comparing two surgeons in their ability to perform a
procedure that you need, would it be helpful to your
decision making to learn that, when operating on patients
who appear to be nearly identical to you, one surgeon has an
operative mortality rate of one in 1,000, whereas the other

has a rate of 30%? Each of these examples illustrates that
imperfect prediction, despite being imperfect, can be valu-
able for decision-making purposes. True, a binary outcome
will either occur or not, but the hypothetical rate at which it
would occur if the experiment could be repeated is of value
to the decision maker.

If imperfect predictions are valuable for decision making,
more accurate predictions should be preferred to less accu-
rate predictions. With prostate cancer detection, decision
rules are implicitly in place (eg, many use PSA � 4.0
ng/mL or abnormal digital rectal examination as reason to
biopsy). A rule that predicts more accurately could detect
more cancers, produce fewer negative biopsies, or both.
Thus we should strive to produce increasingly accurate
prediction models by increasing sample sizes from which to
build prediction models, adding informative markers, and
applying more sophisticated modeling approaches. Improv-
ing our predictive accuracy is critical not only in prostate
cancer, but in all cancers. Cancer patients deserve and
expect improved prediction.

Michael Kattan
Memorial Sloan-Kettering Cancer Center

New York, NY
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